

Agenda item: 7.2.7.1

Source: Broadcom Corporation

Title: Remaining Details of Path Loss for 3D Channel Modeling

Document for: Discussion and Decision

1 Introduction

The agreement at RAN1 #73 on path loss (PL) for 3D channel modeling includes the remaining details for further study (FFS) as follows:

- For line-of-sight (LOS) probability calculation and environment height calculation, 2D distance is used.
- LOS probability for 3D urban micro-cell (3D-UMi):
 $\text{Pr}_{3D-UMi-LOS}(d) = \text{Pr}_{ITU-UMi-LOS}(d)$
- LOS probability for 3D urban macro-cell (3D-UMa) is a function of d and h_{UT} .
 - Details FFS.
- 3D-UMi
 - Environment height is 1m, independently of h_{UT} .
- 3D-UMa
 - A LOS user equipment's (UE's) environment height is 1m with probability $p(d, h_{UT})$.
 - Otherwise the environment height is $h_E(h_{UT})$.
 - Details of $p(d, h_{UT})$ and $h_E(h_{UT})$ FFS, e.g., if $h_E(h_{UT})$ is a deterministic or stochastic function.
- 3D-UMa
 - Height gain $\alpha = [0.6][0.9]$.
- 3D-UMi
 - Alternative 1:
 $PL_{3D-UMi-NLOS}(d, h_{UT}) = PL_{ITU-UMi-NLOS}(d) - \alpha(h_{UT} - 1.5)$
 - FFS height gain α
 - Alternative 2:
 - Decrement of PL is a nonlinear function of height and/or distance
 - Alternative 3:
 - Proposal as in R1-132100
 - FFS, to decide in the next meeting, companies are encouraged to bring additional measurement or simulation results.

This contribution discusses the remaining details of the UE-height-dependent path loss models, including

- LOS probability for 3D-UMa
- Environment height for 3D-UMa
- Non-line-of-sight (NLOS) path loss for 3D-UMi

2 LOS Probability for 3D-UMa

Table 1 provides LOS probability as functions of 2D distance d between base station (BS) and UE for ITU-UMi and ITU-UMa from Table B.1.2.1-2 of TR 36.814 [1]. The same LOS probability for 3D-UMi and a modification for 3D-UMa with a height compensation term $C(d, h_{UT})$ were proposed in [2][3]. **Appropriate applicability ranges for $C(d, h_{UT})$ such as $d \leq 18$ m and $d > 18$ m are required so that LOS probability is not greater than one.** For indoor UEs, the distance d was proposed to be replaced by the outdoor distance d_{out} [3].

Table 1. LOS probability functions for ITU-UMi, ITU-UMa, 3D-UMi, and 3D-UMa.

Source	Model	Applicability range
[1]	$\text{Pr}_{\text{ITU-UMi-LOS}}(d) = \min(18/d, 1) \cdot (1 - \exp(-d/36)) + \exp(-d/36)$	
	$\text{Pr}_{\text{ITU-UMa-LOS}}(d) = \min(18/d, 1) \cdot (1 - \exp(-d/63)) + \exp(-d/63)$	
[2][3]	$\text{Pr}_{\text{3D-UMi-LOS}}(d) = \text{Pr}_{\text{ITU-UMi-LOS}}(d)$	
	$\text{Pr}_{\text{3D-UMa-LOS}}(d, h_{UT}) = \text{Pr}_{\text{ITU-UMa-LOS}}(d) \cdot (1 + C(d, h_{UT}))$	
	$C(d, h_{UT}) = 0$	$d \leq 18$ m, $h_{UT} < 13$ m
[2]	$C(d, h_{UT}) = ((h_{UT} - 13)/10)^{1.5} \cdot g(d)$	$13 \leq h_{UT} \leq 23$ m
	$C(d, h_{UT}) = g(d)$	$h_{UT} > 23$ m
	$g(d) = 1.25 \cdot 10^{-6} \cdot d^3 \cdot \exp(-d/150)$	$d > 18$ m

Figure 1 shows that, at fixed d , the 3D-UMa LOS probability increases with the UE height h_{UT} in $\{13.5 \text{ m}, 16.5 \text{ m}, 19.5 \text{ m}, 22.5 \text{ m}\}$ or floor number n_f in $\{5, 6, 7, 8\}$ where $C(d, h_{UT}) > 0$. The incremental probability for UEs on floor numbers five to eight with LOS above rooftops is $\text{Pr}_{\text{3D-UMa-LOS}}(d, h_{UT}) - \text{Pr}_{\text{ITU-UMa-LOS}}(d)$ as noted in [2].

Proposal 1: For 3D-UMa, adopt the modified LOS probability with a height compensation term and appropriate applicability ranges of BS-to-UE 2D distance.

Figure 1. LOS Probability for 3D-UMa.

3 Environment Height for 3D-UMa

For LOS path loss, the break point distance $d'_{BP} = 4 (h_{BS} - h_E) (h_{UT} - h_E) f_c / c$ varies with both the UE height h_{UT} and environment height h_E assuming that $h_{BS} = 25$ m for 3D-UMa, $f_c = 2 \times 10^9$ Hz, $c = 3 \times 10^8$ m/s, $h_{UT} = 3(n_{fl} - 1) + 1.5$ m, and n_{fl} in $\{1, 2, \dots, 8\}$. Similar to 3D-UMi, the 3D-UMa environment height is one meter for UEs with LOS above streets and probability $\text{Pr}_{ITU-UMa-LOS}(d)$. In contrast, for UEs on floor numbers five to eight with LOS above rooftops and probability $\text{Pr}_{3D-UMa-LOS}(d, h_{UT}) - \text{Pr}_{ITU-UMa-LOS}(d)$, Table 2 compares d'_{BP} for $h_E = 1$ m and various h_E proposed as stochastic [2][3] or deterministic functions [4][5][6][7][8] of h_{UT} . **Like the one-meter average environment height for UEs with LOS above streets, the average heights of lower rooftops are recommended as environment heights for UEs with LOS above rooftops.**

Proposal 2: For 3D-UMa UEs with LOS above streets and probability $\text{Pr}_{ITU-UMa-LOS}(d)$, assume $h_E = 1$ m, and for UEs on floor numbers five to eight with LOS above rooftops and probability $\text{Pr}_{3D-UMa-LOS}(d, h_{UT}) - \text{Pr}_{ITU-UMa-LOS}(d)$, assume $h_E = 12, 13.5, 15$, and 16.5 m, respectively.

Table 2. Environment height and LOS break point distance for 3D-UMa.

Source	Model	n_{fl} h_{UT}	1 1.5	2 4.5	3 7.5	4 10.5	5 13.5	6 16.5	7 19.5	8 22.5
[2][3]	LOS above streets, $1 \leq n_{fl} \leq 8$ $h_E = 1$	h_E d'_{BP}	1 320	1 2240	1 4160	1 6080	1 8000	1 9920	1 11840	1 13760
	LOS above rooftops, $5 \leq n_{fl} \leq 8$ $h_E = U(12, \lfloor h_{UT}/3 \rfloor \cdot 3)$ or $h_E = U(12, h_{UT} - 1.5)$	h_E d'_{BP}					12 520	12 1560	12 2600	12 3640
								15 400	15 1200	15 2000
									18 280	18 840
										21 160
[4][5]	$h_E = 1.5(n_{fl} + 3)$, $5 \leq n_{fl} \leq 8$ or $h_E = (12 + (h_{UT} - 1.5))/2$	h_E d'_{BP}					12 520	13.5 920	15 1200	16.5 1360
[6]	$h_E = 12$, $5 \leq n_{fl} \leq 8$	h_E d'_{BP}					12 520	12 1560	12 2600	12 3640
[7]	$h_E = (2/3) \times \min(h_{BS}, h_{UT})$	h_E d'_{BP}					9 1920	11 2053	13 2080	15 2000
[8]	$h_E = a(h_{UT} - 1.5) + 1.0$	$a = 0.4$	h_E d'_{BP}				5.8 3942	7 4560	8.2 5062	9.4 5450
		$a = 0.5$	h_E d'_{BP}				7 3120	8.5 3520	10 3800	11.5 2960
		$a = 0.6$	h_E d'_{BP}				8.2 2374	10 2600	11.8 2710	13.6 2706
		$a = 0.7$	h_E d'_{BP}				9.4 1706	11.5 1800	13.6 1794	15.7 1686
		$a = 0.8$	h_E d'_{BP}				10.6 1114	13 1120	15.4 1050	17.8 902
		$a = 0.9$	h_E d'_{BP}				11.8 598	14.5 560	17.2 478	19.9 354

4 NLOS Path Loss for 3D-UMi

The following NLOS path loss model has been agreed for 3D-UMa to include a height gain term with $\alpha = 0.6$ or 0.9 and a lower bound of LOS path loss:

$$PL_{3D-UMa-NLOS}(d, h_{UT}) = \max(PL_{ITU-UMa-NLOS}(d, h_{UT}=1.5) - \alpha \cdot (h_{UT} - 1.5), PL_{ITU-UMa-LOS}(d, h_{UT}))$$

where d is the 3D distance between BS and UE as defined in Appendix. Table 3 lists three NLOS path loss models proposed for 3D-UMi:

Alternative 1 includes a height gain term and a lower bound of LOS path loss that is not required for $\alpha = 0.6$ dB/m [9][10] but is required for $\alpha \geq 7.4$ dB/m [11][12]. Although h_{UT} is not an explicit parameter of $PL_{ITU-UMi-NLOS}$, the 3D distance d varies with h_{UT} , and hence the specification of $h_{UT}=1.5$.

Alternative 2 finds the dominant path with lower loss either above rooftops or around buildings [12][13]. The path loss above rooftops includes a lower bound of LOS path loss and ITU-UMa NLOS path loss with a height gain term of $\alpha = 1.5$ dB/m and a loss increase of $\gamma = 20$ dB for an additional diffraction edge due to the BS antenna height at 10 m instead of 25 m [13].

Alternative 3 uses ITU-UMi NLOS path loss for UEs on floor numbers one to four. For UEs on floor numbers five to eight, it takes a weighted sum of ITU-UMi path loss and reciprocal ITU-UMa NLOS path loss with swapped BS and UE antenna heights, a height gain term of $\alpha = 0.9$ dB/m, and the weight of $\beta = 0.5$ [3].

Table 3. NLOS path loss models for 3D-UMi.

Source	Model
[9][10] [11][12]	Alternative 1: $PL_{3D-UMi-NLOS}(d, h_{UT}) = \max(PL_{ITU-UMi-NLOS}(d, h_{UT}=1.5) - \alpha \cdot (h_{UT} - 1.5), PL_{ITU-UMi-LOS}(d, h_{UT}))$ $\alpha = 0.6$
[12][13]	Alternative 2: $PL_{3D-UMi-NLOS}(d, h_{UT}) = \min(PL_{3D-UMi-NLOS}(\text{above rooftops}), PL_{3D-UMi-NLOS}(\text{around buildings}))$ $PL_{3D-UMi-NLOS}(\text{above rooftops}) = \max(PL_{ITU-UMa-NLOS}(d, h_{UT}=1.5) + \gamma - \alpha \cdot (h_{UT} - 1.5), PL_{ITU-UMi-LOS}(d, h_{UT}))$ $PL_{3D-UMi-NLOS}(\text{around buildings}) = PL_{ITU-UMi-NLOS}(d)$ $\alpha = 1.5, \gamma = 20$
[3]	Alternative 3: $PL_{3D-UMi-NLOS}(d, h_{UT}) = PL_{ITU-UMi-NLOS}(d)$ $h_{UT} < 12 \text{ m}$ $PL_{3D-UMi-NLOS}(d, h'_{UT}) = \beta \cdot PL_{ITU-UMi-NLOS}(d) + (1 - \beta) \cdot (PL_{ITU-UMa-NLOS}(d, h_{BS}=h'_{UT}, h_{UT}=1.5) - \alpha \cdot 8.5)$ $h'_{UT} \geq 12 \text{ m}, \alpha = 0.9, \beta = 0.5$

Assuming $d_{in} = 5$ m, the charts on the left in Figure 2 compare the above NLOS path loss models for 3D-UMi indoor UEs. Alternative 2 tends to fit measurement results with larger decrements of path loss above rooftops for UEs on high floors than those on low floors as illustrated in [13]. Other models can be tuned to generate similar results as suggested in [12]. The charts on the right in Figure 2 compare the results from different parametric values, e.g., Alternative 3' with $\beta = 0.1$. In particular, Alternative 1' provides results similar to those of Alternative 2 by using variable height gain factors $\alpha = 0.3$ for $h_{UT} \leq 13.5$ m, and $\alpha = 0.4, 0.5$, and 0.6 for $h_{UT} = 16.5$ m, 19.5 m, and 22.5 m, respectively. **In parallel with 3D-UMa NLOS path loss model, Alternative 1 with variable height gain factors is recommended for 3D-UMi.**

Proposal 3: For 3D-UMi NLOS path loss model, adopt Alternative 1 with variable height gain factors.

Figure 2. 3D-UMi NLOS path loss for indoor UEs.

5 Conclusion

This contribution has presented the following proposals for discussion and decision:

Proposal 1: For 3D-UMa, adopt the modified LOS probability with a height compensation term and appropriate applicability ranges of BS-to-UE 2D distance.

Proposal 2: For 3D-UMa UEs with LOS above streets and probability $\text{Pr}_{ITU-UMa-LOS}(d)$, assume $h_E = 1$ m, and for UEs on floor numbers five to eight with LOS above rooftops and probability $\text{Pr}_{3D-UMa-LOS}(d, h_{UT}) - \text{Pr}_{ITU-UMa-LOS}(d)$, assume $h_E = 12, 13.5, 15$, and 16.5 m, respectively.

Proposal 3: For 3D-UMi NLOS path loss model, adopt Alternative 1 with variable height gain factors.

6 References

- [1] 3GPP TR 36.814, "Further advancements for E-UTRA physical layer aspects."
- [2] R1-132123, RAN1 #73, Ericsson, ST-Ericsson, "LOS 3D-Channel Modeling."
- [3] R1-132100, RAN1 #73, ZTE, "Discussion on 3D Channel Modeling."
- [4] R1-132497, RAN1 #73, Qualcomm, "Initial calibration of channel models for elevation beamforming and FD-MIMO."
- [5] R1-132642, RAN1 #73, Broadcom, "Path Loss for 3D Channel Modeling."
- [6] R1-131988, RAN1 #73, Samsung, "Remaining details for PL for 3D channel modeling."
- [7] R1-132242, RAN1 #73, LG Electronics, "Initial evaluation results based on height-dependent UE modeling."
- [8] R1-131860, RAN1 #73, Huawei, HiSilicon, "Discussion on remaining large scale parameters."
- [9] R1-132744, RAN1 #73, Samsung, *et al.*, "Way Forward on Height Dependent PL."
- [10] R1-132369, RAN1 #73, NTT DOCOMO, "Views on 3D-Channel Model for Elevation Beamforming and FD-MIMO."
- [11] R1-132062, RAN1 #73, Alcatel-Lucent Shanghai Bell, Alcatel-Lucent, "Initial Validation of 3D Channel Modeling."
- [12] R1-132313, RAN1 #73, Nokia Siemens Networks, Nokia, "Remaining Details of Pathloss."
- [13] R1-132124, RAN1 #73, Ericsson, ST-Ericsson, "NLOS 3D-Channel Modeling."

7 Appendix: Path Loss Models

The antenna height at BS is $h_{BS} = 10$ m for 3D-UMi and 25 m for 3D-UMa. The antenna height at UE is $h_{UT} = 3(n_f - 1) + 1.5$ m depending on its floor number n_f in $\{1, 2, \dots, N\}$ with the maximal floor number N in $\{4, 5, 6, 7, 8\}$. By replacing 2D distance d with 3D distance $d_{3D} = (d^2 + (h_{BS} - h_{UT})^2)^{0.5}$, Table 4 provides the path loss models undated from TR 36.814 for outdoor UEs with $h_{UT} = 1.5$ m and environment height $h_E = 1$ m. The LOS break point 2D distance d'_{BP} is **120 m** for 3D-UMi and **320 m** for 3D-UMa at $f_c = 2 \times 10^9$ Hz—the inter-site distance (ISD) is 200 m for 3D-UMi and 500 m for 3D-UMa.

Table 4. Path loss models for outdoor UEs.

Type	Path loss [dB] Note: f_c value in GHz	Applicability range in 2D and default values Note: f_c value in Hz
LOS	$PL_{ITU-LOS} = 22 \log_{10} (d_{3D}) + 28 + 20 \log_{10} (f_c)$	$10 \text{ m} < d < d'_{BP}$ $d'_{BP} = 4 h'_{BS} h'_{UT} f_c / c$ $h'_{BS} = h_{BS} - h_E$ $h'_{UT} = h_{UT} - h_E$ $h_E = 1 \text{ m}$ $c = 3 \times 10^8 \text{ m/s}$
	$PL_{ITU-LOS} = 40 \log_{10} (d_{3D}) + 7.8 - 18 \log_{10} (h'_{BS}) - 18 \log_{10} (h'_{UT}) + 2 \log_{10} (f_c)$	$d'_{BP} < d < 5000 \text{ m}$
NLOS	$PL_{ITU-UMi-NLOS} = 36.7 \log_{10} (d_{3D}) + 22.7 + 26 \log_{10} (f_c)$	$10 \text{ m} < d < 2000 \text{ m}$
	$PL_{ITU-UMa-NLOS} = 161.04 - 7.1 \log_{10} (W) + 7.5 \log_{10} (h) - (24.37 - 3.7 (h / h_{BS})^2) \log_{10} (h_{BS}) + (43.42 - 3.1 \log_{10} (h_{BS})) (\log_{10} (d_{3D}) - 3) + 20 \log_{10} (f_c) - (3.2 (\log_{10} (11.75 h_{UT}))^2 - 4.97)$	$10 \text{ m} < d < 5000 \text{ m}$ $h_{BS} = 25 \text{ m}$ $h_{UT} = 1.5 \text{ m}$ Street width $W = 20 \text{ m}$ Average building height $h = 20 \text{ m}$

For indoor UEs, the BS-to-UE 2D distance is $d = d_{out} + d_{in}$ where d_{out} is the 2D distance from BS to wall, and d_{in} is from wall to UE and uniformly distributed in $(0, \min(25, d))$. Table 5 provides the outdoor-to-indoor (O-to-I) path loss models undated from TR 36.814 by replacing 2D distance $d = d_{out} + d_{in}$ with 3D distance $d_{3D} = ((d_{out} + d_{in})^2 + (h_{BS} - h_{UT})^2)^{0.5}$. For indoor UEs with $h_{UT} = 1.5$ m and environment height $h_E = 1$ m, the models in Table 4 can be used to derive the basic path loss PL_b . For the floor number n_f in $\{2, 3, \dots, 8\}$, the path loss models in Table 4 require modifications as discussed to date.

Table 5. Path loss models for indoor UEs.

Type	Path loss [dB] Note: f_c value in GHz	Applicability range in 2D and default values
O-to-I	$PL_{O-to-I} = PL_b + PL_{tw} + PL_{in}$	
Basic	$PL_b = PL (d_{3D})$	$10 \text{ m} < d < 1000 \text{ m}$
Through wall	$PL_{tw} = 20$	
Inside building	$PL_{in} = 0.5d_{in}$	$0 \text{ m} < d_{in} < \min(25, d) \text{ m}$